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Abstract Fluorescent quinazolinones were synthesized form
ethyl 2-methyl-4-oxo-3,4-dihydroquinazoline −5-carboxylate
intermediate. The photophysical properties of the compounds
were evaluated in DMF solvent. The experimental absorption
and emission of the compounds were compared with the
vertical excitation and emission obtained Density Functional
Theory (DFT) and Time Dependent Density Functional The-
ory (TD-DFT) computation. Application of the fluorescent
compounds as a fluorescent brightening agent was tested on
polyester fiber. Changes in the electronic transition, energy
levels, and orbital diagrams of quinazolin-4(3H)-one ana-
logues were investigated using the DFT computations and
were correlated with the experimental spectral data. The ex-
perimental absorption and emission wavelengths are in good
agreement with those predicted using the DFT and TD-DFT.

Keywords Quinazoline . DFT . TD-DFT . Absorption .

Emission . Photophysical properties

Introduction

A large number of alkaloids contain quinazolinone nucleus
and they are known to have biological activities [1]. In addi-
tion to pharmaceutical applications, quinazolinone derivatives

are widely used as coloring materials in dyestuff industry [2,
3]. The azo colorants based on quinazolinone have industrial
importance [3, 4]. The substituted quinazolinone are reported
as fluorescent compounds for different applications [5–10].
Quinazolinone derivatives are known to be fluorescent bright-
ening agents [2, 3, 8]. Optical whiteners are characterized by a
strong absorption below 400 nm with well separated intense
emission beyond 400 nm [11]. The optical bleaching agents
are chemicals that increase the whiteness when applied on the
natural and synthetic textile materials [12]. The surface of
textile materials therefore appear whiter to the human eye
[13]. Fluorescent brighteners are substances which normally
have a system of conjugated double bonds and electron-
donating groups to show high fluorescence [14, 15].

Fluorescent brightening agents (FBAs) are used in textile
industry to enhance the whiteness and brightness of textile
substrates; they also significantly increase the UV-blocking
properties of the medium to which they are applied [16, 17].
They are also used in pulp and paper industries for the im-
provement of brightness [18]. In addition to the above
mentioned applications they are also used in pH
chemosensing materials [19], chemosensors [20], photo-
induced electron transfer sensors [21], light emitting
diodes [22], biological staining [23] and polyurethane
fluorescent brightener dispersions [24].

Fluorescent whitening agents are derivatives of triazine
[25], stilbene [26], pyrazole [27], naphthalimide [28], quino-
line [29], iso-quinoline [30], quinoxaline [31], oxadiazole
[32], triazole [33], benzoxazole [34], benzotriazole [35] and
tinopol-CBX [36] based compounds. The fluorescent
quinazolinone are also reported as fluorescent brightening
agents for polyester fibers [2, 3]. A fluorescent brightener
should present a high quality of whiteness and fastness. How-
ever, as the fluorescent brightener is exposed to the sunlight,
its whiteness is diminished [3]. This happens because the
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chemical structure of fluorescent brightener is destroyed by
the autoxidation from free radical generated from the sunlight
[3]. Fluorescent whiteners with enhanced chemical, thermal
and photostability are needed today for high performance
textile substrates.

Reported quinazolinone derivatives are 2 and 6-substituted
in which the electron donor is at the 2-position and the
acceptor at the 6- position [2, 3]. A study of the literature
reveals that, electron donor substitution at the 2-position along
with an acceptor at the 6-position gives red shifted absorption
and hence red shifted emission, because such a substitution
pattern leads to an effective donor acceptor chromophore [9].
To achieve blue shifted emission it is necessary to reduce the
donor strength.

In this paper, attempts have been made to synthesize fluo-
rescent quinazolinone thiazolidines. The synthesized
quinazolinone derivatives contain electron donor at the 2-
position and an acceptor at the 5-position. The photophysical
properties like absorption, emission and quantum yields of the
compounds were recorded in the solvent dimethylformamide
(DMF). Fluorescent compounds were used for whitening
polyester fiber for optical brightening study. The changes in
the electronic transition, energy levels, and orbital diagrams of
the quinazolinone derivatives were studied by TD-DFT com-
putation. The computational results were correlated with the
experimental photophysical properties.

Methodology

Materials and Methods

All the commercial reagents and solvents were purchased
from S. D. Fine Chemicals Pvt. Ltd. and they were used
without purification and all the solvents were of spectro-
scopic grade. The absorption spectra of the dyes were
recorded on a Spectronic Genesys 2 UV-Visible spectro-
photometer, and emission spectra were recorded on
Varian Cary Eclipse fluorescence spectrophotometer
using freshly prepared solutions in solvents of different
polarities at the concentration of 1×10−6 mol L−1. The
excitation wavelength used for the fluorescence measure-
ments was absorption maxima of the compounds in re-
spective solvents. The FT-IR spectra were recorded on a
Perkin-Elmer Spectrum 100 FT-IR Spectrometer. 1H
NMR spectra were recorded on VXR 400 MHz instru-
ment using TMS as an internal standard. Mass spectra
were recorded on Finnigan mass spectrometer.

Computational Methods

The ground state geometries of the compounds 7a–7e in their
C1 symmetry were optimized using the tight criteria in the gas

phase using (DFT) [37]. The functional used in this study
was B3LYP [38, 39]. The basis set used for all atoms
was 6-31G(d) [40–42]. The vibrational frequencies of the
optimized structures were computed using the same
method to verify that the optimized structures correspond
to local minima on the potential energy surface. The
vertical excitation energies at the ground-state equilibri-
um geometries were calculated with TD-DFT [43–45].
The low-lying first singlet excited state (S1) of each
tautomer was relaxed using the TD-DFT to obtain its
minimum energy geometry. The difference between the
energies of the optimized geometries in the first singlet
excited state and the ground state was used in computing
the emissions [46–52]. All electronic structure computa-
tions were carried out using the Gaussian 09 program
[53].

Relative Quantum Yield Calculations

The quantum yields of compounds 7a–7e in DMF were
evaluated. Anthracene was used as the standard. Quan-
tum yields were calculated using the comparative method
[54, 55]. The absorption and emission characteristics of
the standards and for the compounds in polar solvents
were measured at different concentrations (1, 2, 3, 4, and
5 ppm level). The emission intensity values were plotted
against absorbance values and linear plots were obtained.
The gradients were calculated for the compounds in each
solvent and for the standards. All the measurements were
done by keeping the parameters such as solvent and slit
width constant. The relative quantum yields of the syn-
thesized compounds in different solvents were calculated
by using the Eq. 1 [54, 55].

ð1Þ

Where:

Φx Quantum yield of compound
Φst Quantum yield of standard sample
Gradx Gradient of compound
Gradst Gradient of standard sample
ηx Refractive index of solvent used for synthesized

compound
ηst Refractive index of solvent used for standard sample

General Procedure of Dyeing

Dyeing of polyester fabric was carried out using high temper-
ature high pressure method in Rossari Labtech Flexi Dyer
dyeing machine at a material to liquor ratio of 1:20. 2 %
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Fluorescent compounds were used for the dying (calculated
on weight of the fabric). All the synthesized fluorescent com-
pounds are having less solubility in water. Initially the com-
pounds were dissolved in 5 mL DMF and diluted with 15 mL
buffered solution of pH 5 made by using sodium acetate and
acetic acid in water. The mixture was ultrasonicated for
15 min to obtain a fine dispersion. Metamol was used as a
dispersant. The polyester fabric was dyed using the above
solution and metamol as the dispersing agent. The dye bath
temperature was raised at a rate of 3 °C min−1 to 130 °C,
maintained at this temperature for 60 min, and rapidly cooled
to room temperature as shown in Fig. 1. The dyed fabrics were
rinsed with cold water and allowed to dry in the open air.

Experimental

Synthesis Details

Ethyl 2-methyl-4-oxo-3,4-dihydroquinazoline-5-carboxylate 4

The intermediate 4 was prepared according to the known
procedure [56].

2-Methyl-4-oxo-3,4-dihydroquinazoline-5-carbohydrazide 5

Ethyl-2-methyl-4-oxo-3,4-dihydroquinazoline-5-carboxylate
(5 g) on reaction with hydrazine hydrate (15 mL) for 2 h under
r e f l u x c o n d i t i o n g a v e 2 -m e t h y l - 4 - o x o - 3 , 4 -
dihydroquinazoline-5-carbohydrazide 5.

Yield: 89 %, Melting point => 300 °C.
1H-NMR (CD3)2SO: δ 2.20 (s, 3H), 5.26 (s, 2H), 7.72 (d,

1H, J=22.00 Hz), 7.79 (d, 1H, J=6.7 Hz), 7.82 (dd, 1H, J=
22.00, 6.7 Hz).

FT-IR (KBr): 3165, 3103, 2981, 2917, 2871, 1665, 1607,
1562, 1478, 1383, 1325, 1261, 1193, 1158, 1103, 1041, 843,
788, 721, 663 cm−1.

2-Methyl-4-oxo-N′-[(Z)-phenylmethylidene]
-3,4-dihydroquinazoline-5-carbohydrazide 6a

2-Methyl-4-oxo-3,4-dihydroquinazoline-5-carbohydrazide 5
(1 g, 4.58 mmol) was reacted with benzaldehyde (0.46 g,
4.58 mmol) in methanol in presences of catalytic amount of
sulfuric acid at reflux condition for 2 h to give 2-methyl-4-
oxo-N′-[(Z)-phenylmethylidene]-3,4-dihydroquinazoline-5-
carbohydrazide 6a.

Yield: 67 %, Melting point => 300 °C.
1H-NMR (CD3)2SO: δ 2.36 (s, 3H), 2.50 (s, 1H), 3.16 (s,

1H), 7.45 (d, 2H, J=7.7 Hz), 7.78 (d, 1H, J=8.5 Hz), 7.86 (m,
5H, J=8.0, 11.09 Hz), 12.01 (s, 1H)

FT-IR (KBr): 3011, 1678, 1613, 1567, 987, 673 cm−1.
Mass: m/z 307 (M+).

2-Methyl-N′-[(Z)-(4-nitrophenyl)methylidene]
-4-oxo-3,4-dihydroquinazoline-5-carbohydrazide 6b

2-Methyl-4-oxo-3,4-dihydroquinazoline-5-carbohydrazide 5
(1 g, 4.58 mmol) was reacted with p-nitro benzaldehyde
(0.69 g, 4.58 mmol) in methanol in the presences of catalytic
amount of sulfuric acid at reflux condition for 6 h to give 2-
methyl-N′-[(Z)-(4-nitrophenyl) methylidene]-4-oxo-3,4-
dihydroquinazoline-5-carbohydrazide 6b.

Yield: 87 %, Melting point => 300 °C.
1H-NMR (CD3)2SO: δ 2.23 (s, 3H), 7.34 (d, 2H, J=

7.7 Hz), 7.62 (d, 2H, J=7.7 Hz), 7.75 (dd, 2H, J=7.7,
9.1 Hz), 8.15 (d, 2H, J=13.2 Hz), 8.3 (d, 1H, J=13.2 Hz),
11.75 (s,1H).

FT-IR (KBr): 2965, 2900, 2644, 1691, 1665, 1584, 1478,
1406, 1309, 1264, 908, 740, 711. cm−1.

Mass: m/z 349 (M-2).

N′-(anthracen-9-ylmethylidene)
-2-methyl-4-oxo-3,4-dihydroquinazoline-5-carbohydrazide
6c

2-Methyl-4-oxo-3,4-dihydroquinazoline-5-carbohydrazide 5
(1 g, 4.58 mmol) was reacted with anthracene 9-
carbaldehyde (0.94 g, 4.58 mmol) in methanol in the pres-
ences of catalytic amount of sulfuric acid at reflux condition
for 4 h to give N′-(anthracen-9-ylmethylidene)-2-methyl-4-
oxo-3,4-dihydroquinazoline-5-carbohydrazide 6c.

Yield: 83 %, Melting point => 300 °C.
1H-NMR (CD3)2SO: δ 2.24 (s, 3H), 7.34 (d, 1H, J=

7.7 Hz), 7.59 (d, 1H, J=7.0 Hz), 7.62 (dd, 4H, J=8.1,
7.9 Hz), 7.76 (d, 4H, J=8.1, 9.7 Hz), 7.73 (s, 1H), 9.25 (s,
1H), 11.72 (s, 1H).

FT-IR (KBr): 2991, 1778, 1623, 1637, 1557, 967, 656 cm−1.
Mass: m/z 407 (M+).

2-Methyl-N′-[(Z)-(4-N, N-diethyl, 2-hydroxy)methylidene]
-4-oxo-3,4-dihydroquinazoline-5-carbohydrazide 6d

2-Methyl-4-oxo-3,4-dihydroquinazoline-5-carbohydrazide 5
(1 g, 4.58 mmol) was reacted with 4-(diethylamino)-2-
hydroxybenzaldehyde (0.88 g, 4.58 mmol) in methanol in
the presences of catalytic amount of sulfuric acid at reflux
condition for 7 h to give 2-methyl-N′-[(Z)-(4-N, N-diethyl, 2-
hydroxy)methylidene]-4-oxo-3,4-dihydroquinazoline-5-
carbohydrazide 6d.

Yield: 79 %, Melting point => 300 °C.
1H-NMR (CD3)2SO: δ 2.21 (s, 3H), 2,48 (t, 3H, J=

7.0 Hz), 3.35 (d, 2H, J=7.0 Hz), 7.30 (d, 1H, J=8.1 Hz),
7.60 (d, 1H, J=7.7 Hz), 7.74 (dd, 1H, J=9.8, 7.7 Hz), 8.81 (m,
3H, J=9.8, 6.9 Hz), 12.21 (s, 1H), 10.39 (s, 1H),

FT-IR (KBr): 3027, 1781, 1622, 1645, 1534, 2511, 978,
656 cm−1.
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Mass: m/z 395 (M+).

N′-[(Z)-(1-Tert-butyl-4-chloro-1H-pyrazol-5-yl)methylidene]
-2-methyl-4-oxo-3,4-dihydroquinazoline-5-carbohydrazide
6e

2-Methyl-4-oxo-3,4-dihydroquinazoline-5-carbohydrazide 5
(1 g, 4.58 mmol) was reacted with 2-tert-butyl-5-chloro-1H-
imidazole-4-carbaldehyde (0.85 g, 4.58 mmol) in methanol in
the presences of catalytic amount of sulfuric acid at reflux
condition for 4 h to give N′-[(Z)-(1-tert-butyl-4-chloro-1H-
pyrazo l -5 -y l )me thy l idene] -2 -methy l -4 -oxo-3 ,4 -
dihydroquinazoline-5-carbohydrazide 6e.

Yield: 85 %, Melting point => 300 °C.

1H-NMR (CD3)2SO: δ 2.5 (s, 3H), 2.65 (s, 9H), 7.30 (d,
1H, J=8.1 Hz), 7.60 (d, 1H, J=7.7 Hz), 7.74 (dd, 1H, J=8.1,
7.7 Hz), 11.72 (s, 1H).

FT-IR (KBr): 3014, 1771, 1643, 1655, 1521, 1456, 1378,
1218, 978, 698, 651 cm−1.

Mass: m/z 388 (M+).

2-Methyl-4-oxo-N-(4-oxo-2-phenyl-1,3-thiazolidin-3-yl)
-3,4-dihydroquinazoline-5-carboxamide 7a

2-Methyl-4-oxo-N ′- [ (Z ) -phenylmethyl idene]-3,4-
dihydroquinazoline-5-carbohydrazide 6a (1.42 mmol) was
reacted with thioglyconic acid (1.42 mmol) in tetrahydrofuran
(THF) at reflux condition for 6 h to give 2-methyl-4-oxo-N-(4-

Fig. 1 Dyeing profile of
polyester used
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oxo-2-phenyl-1,3-thiazolidin-3-yl)-3,4-dihydroquinazoline-
5-carboxamide 7a.

Yield: 69 %, Melting point => 300 °C.
1H-NMR (CD3)2SO: δ 2.25 (s, 3H), 2.5 (s, 2H), 3.45

(s, 1H), 7.33 (d, 1H, J=7.7 Hz), 7.63 (d, 1H, J=7.7 Hz),
7.74 (dd, 1H, J=8.1, 7.3 Hz), 7.80–7.88 (m, 3H, J=8,
8.1, 7.7 Hz), 8.15 (d, 1H, J=8.1 Hz), 8.36 (d, 1H, J=
8 Hz), 9.71 (s, 1H), 11.78(s, 1H)

FT-IR (KBr): 2978, 1789, 1768, 1628, 1667, 1581, 1458,
1335, 1267, 1211, 970, 689, 651 cm−1.

Mass: m/z 388 (M+).

2-Methyl-N-[2-(4-nitrophenyl)-4-oxo-1,3-thiazolidin-3-yl]
-4-oxo-3,4-dihydroquinazoline-5-carboxamide 7b

2-Methyl-N′-[(Z)-(4-nitrophenyl)methylidene]-4-oxo-3,4-
dihydroquinazoline-5-carbohydrazide 6b (1.42 mmol) was
reacted with thioglyconic acid (1.42 mmol) in THF at reflux

condition for 12 h to give 2-methyl-N-[2-(4-nitrophenyl)-4-
oxo-1,3-thiazolidin-3-yl]-4-oxo-3,4-dihydroquinazoline-5-
carboxamide 7b.

Yield: 61 %, Melting point => 300 °C.
1H-NMR (CD3)2SO: δ 2.28 (s,1H), 2.50 (s, 1H), 3.65

(s, 1H), 7.37 (d, 1H, J=7.7 Hz), 7.69 (d, 1H, J=7.7 Hz),
7.69 (d, 1H, J=7.7 Hz), 7.76 (dd, 1H, J=8.1, 7.3 Hz),
8.16 (d, 2H, J=8.8 Hz), 8.37 (d, 2H, J=8.8 Hz), 9.71 (s,
1H), 11.85 (s, 1H)

FT-IR (KBr): 2981, 2823, 2761, 1629, 1558, 1478, 1419,
1338, 1167, 1089, 1044, 876, 779, 698 cm−1.

Mass: m/z 427 (M+).

2-Methyl-4-oxo-N-(4-oxo-2-anthracene-1,3-thiazolidin-3-yl)
-3,4-dihydroquinazoline-5-carboxamide 7c

N′-(Anthracen-9-ylmethylidene)-2-methyl-4-oxo-3,4-
dihydroquinazoline-5-carbohydrazide 6c (1.42 mmol) was
reacted with thioglyconic acid (1.42 mmol) in THF at reflux
condition for 14 h to give 2-methyl-4-oxo-N-(4-oxo-2-

a 

b 

Fig. 3 Absorption and emission spectra of compounds 7a–7e. a Absorp-
tion spectra of compounds 7a–7e in DMF. b Emission spectra of com-
pounds 7a–7e in DMF

a 

b

Fig. 2 Absorption and emission spectra of compounds 6a–6e. a Absorp-
tion spectra of compounds 6a–6e. bEmission spectra of compounds 6a–6e
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anthracene-1,3-thiazolidin-3-yl)-3,4-dihydroquinazoline-5-
carboxamide 7c.

Yield: 71 %, Melting point => 300 °C.
1H-NMR (CD3)2SO: δ 2.28 (s, 3H), 2.50 (s, 2H), 3.65 (s,

1H), 7.37 (d, 1H, J=7.7 Hz), 7.67 (d, 1H, J=7.7 Hz), 7.70–
7.82 (m, 12H, J=18.6, 7.7, 8.0 Hz), 11.85 (s, 1H).

FT-IR (KBr): 3018, 1801, 1757, 1625, 1681, 1580, 1448,
1345, 1255, 1210, 978, 667, 644 cm−1.

Mass: m/z 488 (M+).

2-Methyl-4-oxo-N-(4-oxo-2-(4-(diethylamino)
2-phenol-1,3-thiazolidin-3-yl)
-3,4-dihydroquinazoline-5-carboxamide 7d

2-Methyl-N′-[(Z)-(4-N, N-diethyl, 2-hydroxy)methylidene]-
4-oxo-3,4-dihydroquinazoline-5-carbohydrazide 6d
(1.42 mmol) was reacted with thioglyconic acid (1.42 mmol)
in THF at reflux condition for 10 h to give 2-methyl-4-oxo-

N-(4-oxo-2-(4-(diethylamino)2-phenol-1,3-thiazolidin-3-yl)-
3,4-dihydroquinazoline-5-carboxamide 7b.

Yield: 69 %, Melting point => 300 °C.
1H-NMR (CD3)2SO: δ 2.43 (s, 3H), 2.51 (6H, t, J=

14.3 Hz), 2.64 (2H, s), 3.36 (1H, s), 3.92 (q, 4H, J=
14.3 Hz), 6.92 (s, 1H), 7.63 (d 1H, J=7.7 Hz), 7.72 (d, 1H,
J=8.1), 7.92 (dd, 1H, J=7.7, 8.1 Hz), 8.03 (d, 1H, J=9.3 Hz),
8.23 (d, 1H, J=7.9 Hz), 8.88 (dd, 1H, J=9.3, 7.9 Hz), 10.39
(s, 1H), 12.25 (s, 1H), 12.51 (s, 1H).

FT-IR (KBr): 3028, 1777, 1759, 1631, 1667, 1568, 1440,
1320, 1245, 1264, 957, 678, 621 cm−1.

Mass: m/z 469 (M+).

2-Methyl-4-oxo-N-(4-oxo-2-1-tert-butyl-4-chloro-1
H-pyrazole-1,3-thiazolidin-3-yl)
-3,4-dihydroquinazoline-5-carboxamide 7e

N′-[(Z)-(1-Tert-butyl-4-chloro-1H-pyrazol-5-yl)methylidene]-
2-methyl-4-oxo-3,4-dihydroquinazoline-5-carbohydrazide 6e

Table 1 Observed UV-visible absorption, emission and computed vertical excitation and emission of compounds 7a -7e in DMF

Comp λmax
Expt(nm)

(nm)
TD-DFT
vertical excitation

f %
D

λEm
Expt(nm) λEm

DFT %
D

aStokes shift
Δλ
(cm–1)

bΦ

nm eV

7a 300 307 4.029 0.120 2 431 345 19 10131 0.002

7b 341 362 3.417 0.003 6 432 426 1 6177 0.017

7c 354 402 3.083 0.010 13 464 440 4 6696 0.021

7d 342 383 3.233 0.0003 11 431 473 9 6037 0.102

7e 312 303 4.083 0.007 2 428 470 9 8686 0.253

a Stokes shift in cm–1

b Quantum yield

Analyses were carried out at room temperature (25 °C); experimentally observed λmax
(% D) % Deviation between vertical excitation and experimental absorption and experimental emission and computed (TD-DFT) emission

f: Oscillator strength

Graph 1 HOMO-LUMO
energies of compounds 7a–7e in
different solvents
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(1.42 mmol) was reacted with thioglyconic acid (1.42 mmol)
in THF at reflux condition for 18 h to give 2-methyl-4-oxo-
N-(4-oxo-2-1-tert-butyl-4-chloro-1H-pyrazole-1,3-
thiazolidin-3-yl)-3,4-dihydroquinazoline-5-carboxamide 7e

Yield: 61 %, Melting point => 300 °C.
1H-NMR (CD3)2SO: δ 2.22 (s, 3H), 2.48 (s, 9H), 3.16 (s,

1H), 3.35 (s, 1H), 7.30 (d, 1H, J=8.7 Hz), 7.61 (d, 1H, J=
8.7 Hz), 7.74 (dd, 1H, J=6.1, 8.7 Hz), 11.72 (1H, s)

FT-IR (KBr): 3034, 1759, 1721, 1645, 1621, 1545, 1435,
1341, 1257, 1222, 950, 669, 602 cm−1

.

Mass: m/z 462 (M+).

Result and Discussion

Chemistry

Synthesis of 2-methyl-4-oxo-3,4-dihydroquinazoline-5-
carbohydrazide 5 was performed by reacting ethyl-2-methyl-
4-oxo-3,4-dihydroquinazoline-5-carboxylate with 98 % hy-
drazine hydrate under reflux condition for 2 h. Initially
ethyl-2-methyl-4-oxo-3,4-dihydroquinazoline-5-carboxylate
was insoluble in hydrazine hydrate at room temperature and it
gets solubilized after heating at reflux condition. The product
was separated from the reaction mass as the reaction goes to
completion. On completion of the reaction the reaction mix-
ture was cooled, the product was separated by filtration,
washed with cold water, and dried.

The intermediate 2-methyl-4-oxo-3,4-dihydroquinazoline-
5-carbohydrazide 5 was reacted with different aldehydes in
methanol at reflux condition to give the corresponding Schiff
base 2-methyl-4-oxo-N ′ - [ (Z ) -phenyl subst i tu ted
methylidene]-3,4-dihydroquinazoline-5-carbohydrazide (6a–
6e). In this step the formation of Schiff base requires nearly
2 to 7 h. The reaction was initiated in the presence of catalytic
amount of H2SO4. On completion of the reaction the reaction

Fig. 4 TGA of compounds 7a,
7b, 7c and 7e

Table 2 Frontier molecular orbitals of compounds 7a-7e

Compounds

7a 

7b 

7c 

7d 

HOMO LUMO 

7e 
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mixture was cooled, and neutralized with Na2CO3 at low
temperature to precipitate the products. The products were
filtered and dried. The yields of the compounds 6a–6e range
from 67 to 87 %.

2-Methyl-4-oxo-N-(4-oxo-2-phenyl substituted −1,3-
thiazolidin-3-yl)-3,4-dihydroquinazoline-5-carboxamide
(7a–7b) was prepared by reacting the Schiff base 2-methyl-4-
oxo-N ′-[(Z)-phenyl substituted methylidene]-3,4-
dihydroquinazoline-5-carbohydrazide (6a–6e) with
thioglyconic acid in THF in the presence of catalytic amount
of PTSA. The reaction details are summarized in the experi-
mental procedure and the synthetic strategy is presented in
Scheme 1.

Photophysical Properties

The absorption and emission properties of the compounds 6a–
6e and 7a–7e were studied in the solvent DMF. All the
absorption-emission studies were performed at room temper-
ature using solutions of concentration 1×10−6 M. The synthe-
sised compounds are fluorescent in solution under irradiation
of UV light. The absorption and emission spectra of the
compounds 6a–6e and 7a–7e are presented in Figs. 2 and 3
respectively. The effect of electron donor and electron accep-
tor groups on the absorption and the emission properties of the
compounds were studied. All the compounds absorb in the
ultraviolet region and emit in the visible region. The absorp-
tion and the emission properties of the compounds show that
they are well suitable to function as fluorescent brightening
agents. In other words they absorb in the ultra-violet region
and emit in the visible region. The observed photophysical
properties of the compounds are compared with the computa-
tional results obtained byDFTand TD-DFTand the results are
summarised in Table 1.

The absorption and emission properties of the compounds
depend on the quinazolone unit as there is no direct

conjugation between quinazolone and thiazolyl units. This is
also supported by the fact that the compound 6a–6e and 7a–7e
have similar photophysical properties. The compounds 6a–6e
absorb at 300 nm except the compound 6c which absorbs at
354 nm in DMF. The experimental absorption properties of
the compounds are well in agreement with the computed
energy difference between HOMO and LUMO Graph 1. In
the case of the compound 6c the energy difference between
HOMO and LUMO is less as compared to the other com-
pounds and it shows a red shifted absorption. The analo-
gous behavior is observed for the compounds 7a–7e. The
compounds 6a–6e emit at 430 nm except the compound 6c
which emits at 470 nm in DMF. The emission properties of
the compound 6a–6e and the compounds 7a–7e are almost
the same in DMF. This clearly indicates that the quinazolone
unit is responsible for the absorption as well as the emission
properties. The compounds 7b and 7c show dual absorption.
The short wavelength absorption is in the range 274–294 nm
and the long wavelength absorption is at 350 nm. In the case
of the emission spectra of the compound 7a–7e a single
intense emission was observed. The quantum yields of the
compounds are in range of 0.002 to 0.353. The compound 7e
shows a higher quantum yield as compared to the compounds
7a–7d in DMF.

Computational Study

The observed experimental absorption properties of the com-
pounds were compared with the vertical excitation data ob-
tained computationally and they are in good agreement with
each other. The maximum difference is observed for the
compounds 7c and 7d. In the case of the compounds 7a, 7b
and 7e the experimental absorption and the vertical excitation
are almost the same. In the case of the emission a large
difference was observed between the experimental emission
and the calculated emission for the compound 7a (19 %) and a

Table 3 Color properties of compounds 7a-7e

Standard blank polyester 7a 7b 7c 7d 7e

X 48.025 56.532 51.414 57.805 48.921 53.635

Y 50.82 59.421 54.689 61.766 51.823 56.874

Z 54.138 56.284 55.871 61.848 54.815 57.327

L* 76.57 81.522 78.862 82.789 77.175 80.109

a* −0.396 0.525 −1.111 −1.797 −0.54 −0.696
b* 0.416 6.879 2.687 3.915 0.799 3.451

C* 0.574 6.899 2.908 4.308 0.964 3.52

H* 133.608 85.601 112.491 114.682 124.075 101.434

K/S 0.2515 0.5506 0.3152 0.5626 0.2739 0.4152

Berger whiteness −299.914 −145.533 −275.681 −16.865 −168.12
Stensbay whiteness 62.46 67.468 65.653 73.158 67.668

Taube whiteness 46.873 59.417 62.094 63.791 58.686
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larger difference was observed for the compounds 7d and 7e.
In the case of the compounds 7c and 7d the experimental
emission and the calculated emission are very close to each
other. A large Stokes shift was observed for the compounds 7c
and 7e. The % deviation between the experimental
photophysical properties and the calculated photophysical
properties and oscillator strength obtained by DFT computa-
tion are summarised in Table 1.

The most probable electronic transitions occurring in
the molecules were understood using the frontier molec-
ular orbitals (HOMO and LUMO) generated using
Gaussview 05 program for compounds 7a–7e in the sol-
vent DMF Table 2. All the compounds may be
considered to be consisting of three cores—quinazolinone,
thiazolidine and aromatic cores. The electron density for
the compounds 7a–7e is concentrated on the thiazolidine
core, but the LUMO energy distribution pattern is not
linear. In the case of compounds 7a, 7d and 7e the
electron density is spread over quinazolinone unit. The
electron distribution is on the aromatic system of the
thiazolidine for compounds 7c and 7b. The electron
distribution patterns of compounds 7a–7e indicates that
the thiazolidine core acts as donor and quinazolinone and
aromatic cores of the compound 7c and 7b act as acceptor
units.

Thermogravimetric Analysis

Thermal stability of the compounds 7a–7e was evaluated by
thermogravimetric analysis (TGA). The compounds are ther-
mally stable up to 200 °C. The compounds start decomposing
after 200 °C and the decomposition is complete at 600 °C.
Compound 7c is thermally more stable as compared to the
compounds 7a, 7b and 7e. The compound 7d is a semi-solid
and so thermal stability of the compound 7d was not evaluat-
ed. The thermogravimetric studies have been carried out in the
temperature range 50–600 °C under nitrogen gas at a heating
rate of 10 °C min−1 Fig. 4.

Color Assessment

The colorimetric parameters of the whitened polyester
fabrics using synthesized fluorescent molecules 7a–7e
were recorded on a reflectance spectrophotometer CE-
7000A Gretag-Macbeth. CIE 1976 Color Space method
was used to evaluate the color values of the synthesized
compounds 7a–7e on polyester fabrics in terms of L*, a*
and b* (Table 3). All the compounds have good affinity
towards the polyester fabrics at high temperature and
gave whitening with a blue tinge on polyester fabrics.
The whiteness index values of the fabrics dyed with
compounds 7a–7e are summarized in Table 3.

Conclusion

Fluorescent compounds are synthesised from the intermediate
ethyl 2-methyl-4-oxo-3, 4-hydroquinazoline-5-carboxylate.
Photophysical properties of the compounds in DMF were
evaluated experimentally and the results are compared with
the theoretical data. The experimental results are in good
agreements with the theoretical results. The % deviation be-
tween the experimental absorption and the emission is in the
range between 1 and 19 %. The fluorescent compounds show
good brightness on polyester fibres and have good thermal
stability.
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